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A B S T R A C T

Background and objective: Early and accurate diagnosis of Alzheimer's Disease (AD) is critical since early treat-
ment effectively slows the progression of the disease thereby adding productive years to those afflicted by this
disease. A major problem encountered in the classification of MRI for the automatic diagnosis of AD is the so-
called curse-of-dimensionality, which is a consequence of the high dimensionality of MRI feature vectors and the
low number of training patterns available in most MRI datasets relevant to AD.
Methods: A method for performing early diagnosis of AD is proposed that combines a set of SVMs trained on
different texture descriptors (which reduce dimensionality) extracted from slices of Magnetic Resonance Image
(MRI) with a set of SVMs trained on markers built from the voxels of MRIs. The dimension of the voxel-based
features is reduced by using different feature selection algorithms, each of which trains a separate SVM. These
two sets of SVMs are then combined by weighted-sum rule for a final decision.
Results: Experimental results show that 2D texture descriptors improve the performance of state-of-the-art voxel-
based methods. The evaluation of our system on the four ADNI datasets demonstrates the efficacy of the pro-
posed ensemble and demonstrates a contribution to the accurate prediction of AD.
Conclusions: Ensembles of texture descriptors combine partially uncorrelated information with respect to stan-
dard approaches based on voxels, feature selection, and classification by SVM. In other words, the fusion of a
system based on voxels and an ensemble of texture descriptors enhances the performance of voxel-based ap-
proaches.

1. Introduction

Today over forty-seven million people around the world are affected
by Alzheimer’s Disease (AD) [1,2]. Early and accurate diagnosis of AD
is critical since early treatment effectively slows the progression of the
disease adding productive years to those afflicted by it. Research that
investigates the symptomatic predementia stage of AD, most commonly
referred to as Mild Cognitive Impairment (MCI), is essential for devel-
oping better methods for predicting whether MCI will convert to AD
(MCIc) or not (MCInc) and thus for initiating appropriate intervention
programs.

Although a definite diagnosis of AD can only be obtained through a

post-mortem analysis, clinical diagnosis today relies mostly on neu-
ropsychological assessments of cognitive impairment [3]. In a recent
revision of the diagnostic criteria by the National Institute on Aging-
Alzheimer’s Association workgroup [4], new supportive indicators are
now recommended for consideration in the diagnosis of AD, including
results on neurogenetic testing and measurement of cerebrospinal fluid
(CSF), amyloid, tau, and neuronal injury biomarkers, as measured
through neuroimaging techniques, such as Magnetic Resonance Ima-
ging (MRI) and Positron Emission Tomography (PET). MRI and PET
neuroimaging techniques are particularly good at providing measure-
ments of atrophy and metabolism/amyloid markers, respectively.
Changes in these features are detectable even before dementia is
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evident [5,6].
Because MRI is less expensive than PET and is noninvasive, it is

more widespread in both Western and non-Western regions. These
features make MRI a suitable technique for the early detection of AD
neuronal degeneration and for monitoring the progression of the dis-
ease in clinical trials [7]. Consequentially, considerable research effort
has recently been focused on the development of advanced MRI pro-
cessing techniques, especially techniques that exploit the power of
Machine Learning (ML) for enhancing diagnostic accuracy in the early
detection of AD. The goal is to produce ML systems that can detect
pathologies through the automatic analysis of brain MRI volumes
without apriori hypotheses on the location of relevant information. ML
research in this area would thus not only move the detection of AD
forward but would also improve our understanding of the disease.

An issue often encountered in the classification of MRI for the au-
tomatic diagnosis of AD is the curse-of-dimensionality problem, which
is a consequence of the high dimensionality of MRI feature vectors and
the low number of training patterns available in most MRI datasets
relevant to AD. To avoid the curse-of-dimensionality problem, ML ap-
proaches must employ methods for selecting a subset of the original
MRI features that are powerful enough to achieve high classification
performance in the detection of AD.

A key area of research investigates the extraction of relevant fea-
tures from the textural information in MRI images. Some findings
support the hypothesis that the accumulated effect of neurofibrillary
tangles and Ab plaques on MRI image produce specific textural patterns
in MRI images [8], and texture analysis has successfully been used to
identify surrogate biomarkers of AD from the medial temporal lobe
studied by MRI [9]. Furthermore, the analysis of textures extracted
from MRI images of the hippocampus was found to be more effective in
the diagnosis and prognosis of AD than hippocampus atrophy [10].

To date, several texture approaches in ML, such as the Gray-Level
Co-occurrence Matrix (GLCM), Wavelet Transformation, the Statistical
Approach, and the Local Binary Pattern (LBP), have been applied to the
problem of AD diagnosis [11]. In [12] the GLCM approach using dif-
ferent sized Regions of Interest (ROI) in 3D MRI texture features suc-
ceeded in discriminating MRI images of patients with AD from images
of normal patients. Zhang et al. found that GLCM and Run Length
Matrix (RLM) could also be used to analyze the texture of the hippo-
campus. In Simoes, Slump, and Marie (2012), a local statistical method
based on a co-occurrence matrix texture map was introduced to diag-
nose the onset of AD by discriminating images of patients with MCI
from Cognitively Normal (CN) subjects. An interesting emerging ap-
proach is the one proposed in the paper by Cevik et al. [13], in which
the authors introduce a 3-step approach for identifying a subset of

significant features and use a Multivariate Adaptive Regression Splines
(MARS) method for classifying structural brain MRI of AD.

In this work, we propose a new classification system based on multi-
domain sets of features. Separate SVMs are trained on each of these sets
and combined. Different feature-extraction and selection approaches
are compared for training the SVMs that select different subsets from
the whole set of features. Due to computational issues with 3D de-
scriptors, we focus in this study on 2D descriptors.

Specifically, we test the following feature-extraction and feature-
selection techniques on different MRI studies:

• Two different feature selection methods based on voxels [14];

• A set of texture descriptors extracted from each slice of an MRI: for
each descriptor, a different SVM is trained, and the set of SVMs is
then combined by sum rule. Since the descriptors are extracted from
each slice of the MRI, an extremely large feature vector is finally
obtained. A subset of the feature set is retained using different fea-
ture selectors before feeding the vectors into the SVMs;

An important finding in this paper is that ensembles of texture de-
scriptors combine partially uncorrelated information with respect to
standard approaches based on voxels, feature selection, and classifica-
tion by SVM. To the best of our knowledge, this is one of the first papers
that presents a study that combines texture descriptors and voxel-based
features for the early diagnosis of AD. The most important finding of
this paper is that such a combination improves the automatic-classifi-
cation performance for the early diagnosis of AD. These results further
suggest that texture descriptors and voxel intensities return com-
plementary information with respect to the diagnosis of AD.

The remainder of this paper is organized as follows. In Section 2, we
describe our approach, including the feature selection algorithms and
texture descriptors compared and combined in the proposed system. In
Section 3, we compare feature selection algorithms and texture de-
scriptors and experimentally build a high performing ensemble. Finally,
in Section 4 we present some conclusions.

2. Proposed system

As illustrated in Fig. 1, the proposed system is an ensemble com-
posed of two other ensembles, one of which combines a set of SVMs
(top) trained on markers built from the voxels of MRI (described in
Section 2.1) and the other of which combines a set of SVMs (bottom)
trained on different texture descriptors extracted from the MRI slices.
The four texture descriptors (TD) used in this study are described in
Section 2.2. To reduce computation time, voxel-based features are

Fig. 1. Schematic of the proposed system.
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selected using three different feature selection (FS) algorithms (ad-
dressed in Sections 2.1.1–2.1.3): Fisher score (Fi), Kernel Partial Least
Squares (KPS), and Aggregate selection (AS). As illustrated in Fig. 1,
KPS and AS use Fi features. Each feature selector and each texture
descriptor are trained on separate SVMs. The two sets of SVM are
combined by weighted sum rule to form their respective ensembles of
FS and TD. These two ensembles are then combined by weighted-sum
rule for a final decision. In the experimental section, we also compare
and combine our approach to that developed by Tong et al. [15] (de-
tailed in Section 2.3) that uses the Global Grading Biomarker (GGB).

SVM [16] is the main classifier used throughout the system (tested
using both histogram and the radial basis function kernel) and is im-
plemented using LibSVM (https://www.csie.ntu.edu.tw/∼cjlin/
libsvm/).

2.1. Voxels+ Feature selection (FS)

A well-established and validated preprocessing procedure [17] was
applied to each MRI image before feature selection and classification.
Preprocessing includes the following steps: 1) image reorientation; 2)
cropping; 3) skull-stripping; 4) image normalization to MNI standard
space (MNI152 T1 1mm brain template); and 5) tissue segmentation
into Gray Matter and White Matter tissue-probability maps. Specifi-
cally, image normalization aims at transforming all MR images from the
original-image space to a standard-reference space defined by the se-
lected template. With this operation, all MR images normalized to a
defined standard space characterized by voxel-to-voxel correspondence,
making inter-subject analyses possible at a voxel level. Tissue seg-
mentation aims at returning brain spatial distribution of different tis-
sues in a given MRI scan. Tissue segmentation is performed using tissue-
probability maps that are available through the SPM software package
available at The Wellcome Centre for Human Neuroimaging (https://
www.fil.ion.ucl.ac.uk/spm/) and that are referenced to the MNI stan-
dard space. It must be noted that GM is known to be the most damaged
tissue by the pathophysiological mechanisms of Alzheimer’s Disease,
and GM-related features have accordingly been shown to have the
highest discrimination power in automatically classifying AD (see, e.g.
[17]). All the steps of this preprocessing procedure were performed
using the VBM8 software package [18]. The final size of the MRI vo-
lumes is 121×145×121 voxels. Raw single-voxel intensities were
used as features for the subsequent analyses.

The resulting dimensionality of the feature vector extracted from
the preprocessing procedure is huge. Data with high dimensionality is
challenging due to the curse-of-dimensionality: in the presence of many
irrelevant features, classifiers tend to become overfitted and less com-
prehensible. FS is one method that identifies relevant features for di-
mensionality reduction. In this work, the following FS approaches are
tested: Fisher score (Fi), Kernel Partial Least Squares (KPS), and
Aggregate selection (AS). Each of these FS methods is described below.

2.1.1. Fisher score (Fi)
Fi [16], or the scoring algorithm, is a widely used criterion for su-

pervised feature selection. It can be described as follows: given a setS
of d features, the aim is to choose a subset T of <m d features that
maximizes some criterion function F :
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where ⋅| | is the cardinality of the feature subset. Because Eq. (1) is
NP-hard, a common heuristic is to compute a score for each feature
independently using some criterion function, after which the highest
scoring m-ranked features are selected.

The evaluation criterion used in Fisher Score (FSF ) for a given
feature fi can be formulated as:
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where μi is the mean of the feature fi, nj is the number of samples in the
j -th class, and μi j, and σi j, are the mean and the variance of the fi on
class j, respectively.

2.1.2. Kernel partial least squares (KPS)
KPS [19] is an FS technique that discovers the nonlinear correlation

among the features by computing an approximation between a given
matrix and a vector of labels. Partial Least Squares (PLS) is often de-
scribed as a more powerful Principle Component Analysis (PCA)
method [20] since the data are transformed into a different set of non-
orthogonal basis vectors where only the most important PLS compo-
nents are used to build a regression model. Whereas the new basis
vectors in PCA become a set of successive orthogonal directions that
explain the largest variance in the data, in PLS the basis vectors are a set
of conjugant gradient vectors to the correlation matrix.

There are two main approaches for kernelizing PLS. One approach is
based on the so-called kernel trick used in building SVMs. In fact, KPS is
closely related to SVM [21] in that each point is mapped nonlinearly to
a higher dimensional feature space, and a linear regression function is
constructed in the mapped space that corresponds to a nonlinear
function in the original input space. In the dual space, the mapped data
appear as dot products, and these dot products are replaced by kernel
functions in the final K-PLS algorithm. The second approach is to use
PLS to factorize the kernel matrix directly. This method is based on a
direct factorization of the kernel matrix. KPS is a nonlinear extension of
PLS. Once the kernel matrix has been determined, only linear algebra is
required [21].

In this paper we use the multivariate feature selection approach
proposed in [22]. The KPS algorithm can be stated in terms of the dot
products between pairs of inputs and the substitute kernel function

∙ ∙K( , ). If ∈ ×X N D is the matrix of D-dimensional observed D vari-
ables with N the number of observations, and if ∈ ×Y N C is the cor-
responding matrix of C-dimensional C classes, then we can map a
nonlinear transformation ∙Φ( ) of the data into a higher-dimensional
kernel space , such that →x ε x εΦ: Φ( )I I

D .
The first component for KPS can be determined as the eigenvector of

the following square kernel matrix for =β β λ βK K: X y
Φ Φ Φ, where KX is

an element of the Gram Matrix KX in the feature space, and λ is an
eigenvalue. The size of the kernel matrix K KX y is ×N N regardless of
the number of variables in the original matrices X and Y .

If = …t t t{ , , , h1 2 } is a set of components, with h the desired number
of components, then the accumulation of variation explanation of T to
Y can be written as:
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where vil is the weight of the i -th feature for the l -th component,
∙ ∙Ψ( , ) is a correlation function, and tΨ(y , )j l is the correlation between

tl and Y . Larger values of wi represent more explanatory power of the i
-th feature to Y .

In kernel space, KPS becomes an optimization problem:
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where α is an appropriate projection vector, and S1
Φ and S2

Φ are the
inter-class scatter matrix and intra-class scatter matrix, respectively.

The calculation of the contribution of the l -th component γl can be
calculated as:
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where Ni is the number of samples in the i -th class, and mil
Φ is the mean

vector of the i -th class with respect to the l -th component in the
projection space. The larger γl the more significant the classification.

In this paper the same parameters are used as in the MATLAB
toolbox provided by the authors of [22]. The source code is available at
https://github.com/sqsun/kernelPLS. The number of components, h, is
set to 10 (in the source code, we also set the kernel parameters alpha to
1 and coef to 0.1).

2.1.3. Aggregate selection (AS)
AS [23] is an FS approach that combines the feature ranking ob-

tained using Fi [16], the two-sample t-test [16], and the Sparse Multi-
nomial Logistic Regression via Bayesian L1 Regularization [24]. The
confidence of each of these criteria is different. Thus, if we take into
account the ranking of all the above criteria, the resulting set of features
should prove superior.

The two-sample t-test is a parametric hypothesis test that compares
whether the average difference between two independent samples is
significant or not and is expressed as:
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1
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1

2
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where μ1 and μ2 are the means of the two samples, σ1 and σ2 are the
respective standard deviations, and n1 and n2 are the sample sizes.

The Sparse Multinomial Logistic Regression via Bayesian L1
Regularization provides the standard penalized maximum likelihood
solution to multi-class pattern recognition problems that includes
sparsity as provided from a Laplace prior. With the Laplace prior, the
regularisation parameters can be integrated out analytically. This re-
moves the need for a lengthy cross-validation-based model selection
stage. Sparse Multinomial Logistic Regression via Bayesian L1
Regularization is thus a fully automated process, having storage re-
quirements that scale only linearly with the number of model para-
meters. Because the mathematics describing this algorithm are com-
plex, the reader is referred to [24] for further details.

In practice, it is difficult to combine the ranking of all criteria be-
cause the ranges of statistics in the criteria are different, and a criterion
that generates a higher range of statistics would dominate those with a
lower range. To avoid this problem, AS uses a modified analytic hier-
archy process (AHP) that assembles an elite set of features through a
systematic hierarchy. This is accomplished by comparing the ranking
features of a set of criteria initially by constructing a comparison ma-
trix, whose elements are required to be transitive and consistent.
Consistency of the comparison matrix is calculated using the
Consistency Index (CI) and the Consistency Ratio (CR) based on large
samples of random matrices. Let = …ε ε ε ε[ , , , ]n

T
1 2 be an eigenvector and

λ be an eigenvalue of the square matrix X:

=Xε λε. (7)
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CI λ n
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=CR CI/RI, (9)

where RI is a random consistency index obtained from randomly
generated reciprocal matrices, =λ λmax( )max i , ∀ ∈i n[1, ] and

= … …λ ε x x ε ε1/ [ , , ][ , , ] .i i i in n
T

1 1 If the set of judgments is consistent, the
CR will not exceed 0.1 (in practice a few CR > 0.1 have to be ac-
cepted). If CR=0, then the judgments are perfectly consistent.

After the comparison matrices are constructed, hierarchical analysis
calculates the eigenvectors for each criterion that demonstrate the
ranking scores. This becomes the performance matrix. The ranking of
features is the multiplication of the performance matrix, and the vector
representing the weight of importance for every criterion, i.e., the
weight vector, is obtained by evaluating the level of importance each
criterion is given regarding some goal. To avoid bias, the weight vector
is typically 1 divided by the number of criteria.

2.2. Texture descriptors

Once the final feature vector is provided by concatenating the fea-
ture vector extracted from each slice of an MRI, different texture de-
scriptors are extracted and trained with an SVM. Extracting texture
features reduces the size of the input vectors. The SVMs are then fused
by sum rule. The descriptors tested in this paper are described below.

2.2.1. GABOR
Gabor filter [25] features (GABOR) are extracted from several dif-

ferent values (experimentally evaluated) for scale level and orientation.
The best result obtained was with five different scale levels and four-
teen different orientations. The mean-squared energy and the mean
amplitude were calculated from each possible combination between
scale and orientation. This method resulted in a feature vector of size
5×14×2.

2.2.2. WAVE
WAVE features are extracted from the horizontal, vertical and di-

agonal detail coefficients from wavelet decomposition [26] at level 0 to
9. For each level, we use the square root of the sum of all the horizontal,
vertical, and diagonal coefficients as the feature. Three wavelet mothers
are used: Haar (H), Daubechies 4 (DB), and Coiflets 2 (CO). WAVE- x
means that we extract the features using the x wavelet mother.

2.2.3. Gaussian of Local Descriptors (GOLD)
GOLD, proposed by Serra et al. [27], is an improvement of the Bag

of Word (BoW) [28]. The canonical BoW descriptor extracts local fea-
tures that generate a codebook, and this codebook encodes the local
features into codes that form a global image representation. The co-
debook generation step is performed through clustering methods on the
training set. GOLD generates the codebook via a flexible local feature
representation obtained through a parametric probability density esti-
mation that requires neither quantization nor a training set. The GOLD
feature vector is then fed into an SVM with a histogram kernel.

In brief, GOLD descriptors are obtained by extracting a set of feature
descriptors = … ∈F F F F F{ , , },N i

n
1 2, R from an image, collecting and

weighting them in a spatial pyramid, and then describing each sub-
region by the estimated parameters of a multivariate Gaussian dis-
tribution. The covariance matrix is projected on a Euclidean space and
concatenated to the mean vector to obtain the final descriptor of size

+n n( 3 )/22 . This feature vector is then fed into an SVM with a histo-
gram kernel.

Below we describe this four-step process in greater detail:
Step 1. Extract Features: dense SIFT descriptors are extracted on a

regular grid of the input image. Feature extraction is performed by
calculating SIFT descriptors, using the function vl_phow from the vl_feat
library 63 [29].

Step 2. Apply Spatial Pyramid Decomposition: the image is decom-
posed into subregions by a multilevel recursive image decomposition;
features are then softly assigned to regions according to a local
weighting. In order to take into account the spatial distribution of de-
scriptors, the input image is divided into subregions defined by a
multilevel recursive image decomposition: at level zero, the decom-
position consists of the entire image, at level one, the image is sub-
divided into four quadrants, and so on. Instead of performing a hard-
assignment of descriptors to regions, a soft assignment is performed
according to a weighting strategy that assigns a weight to each of the
descriptors on the basis of its distance from the region’s center. Given a
region, REG, centered in c c( , )x y with dimensions ×REG REGw h and
given a local feature descriptor ∈F nR computed at ( f f,x y), its
weighting function is computed as:

⎜ ⎟⎜ ⎟= ⎛
⎝

−
− ⎞

⎠
∙⎛

⎝
−

− ⎞
⎠

w F REG
f c
REG

f c

REG
( , ) 1 1 .x x

w

y y

h (10)

L. Nanni, et al. Artificial Intelligence In Medicine 97 (2019) 19–26

22

https://github.com/sqsun/kernelPLS


The function w F REG( , ) belongs to the range [0,1] and is designed so
that the feature descriptors extracted from the center of the region have
the maximum weight, while feature descriptors placed on the borders
between two regions are equally considered for both regions. In this
work one level of decomposition is used.

Step 3. Estimate parametric probability density: each region is re-
presented as a multivariate Gaussian distribution of the extracted local
descriptors by inferring local mean and covariance. The set of weighted
feature descriptors belonging to each region is then used to infer the
parameters of a multivariate Gaussian distribution. If = …F F F F{ , , }N1 2
is the set of weighed local feature descriptors of a region, μ∈ℜn the
mean vector, and ∈ ×C n nR the covariance matrix of a multivariate
Gaussian distribution N belonging to a region, then:

= − − −−

Cμ
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|2 |
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i
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In this work we show that the covariance matrix C can be con-
sidered as an image, and standard texture descriptors can be used to
describe it. Each of these feature vectors is fed into an SVM (with a
radial basis function kernel) [21].

Step 4. Project on the tangent Euclidean space: After the covariance
matrix is projected on the tangent space, it is concatenated to the mean
to obtain the final region descriptor. The parameters of μ and C provide
a good representation of a region, but they are not feature vectors that
are suitable for feeding a classifier (e.g., due to the dimensionality). In
order to obtain a descriptor suitable for general purpose classifiers, the
covariance matrix C is mapped into a point in the Euclidean space and
concatenated to the mean μ so that the final region descriptor is a fixed
length descriptor appropriate for linear classifiers based on the dot
product.

Projection is performed in two steps: first, the covariance matrix C is
projected on a Euclidean space tangent to the Riemannian manifold, at
a specific tangency matrix T; second, the orthonormal coordinates of
the projected vector are extracted. In [27], the best choice for T was
determined to be the identity matrix I since the neighborhood relation
between the points in the new space remain unchanged wherever the
projection point p is located. Therefore, the projection formula of the
covariance matrix C into a vector point c simply applies the vector
operator to the standard matrix logarithm thus:

= I CIc vec log( ( )),
1
2

1
2 (14)

where log is the matrix logarithm operator and vec is the vector operator
on the tangent space at identity, which for a symmetric matrix C is
defined as =Mvec ( ) [m ,1,1 2 m1,2, 2 m1,3,…, m2,2, 2 m2,3, …, mn n, ].

2.2.4. Ternary coding (TC)
TC [30] features are extracted from a variant of LBP that addresses a

critical limitation of LBP [31], namely its high sensitivity to noise in the
near-uniform regions. Because TC offers a higher level of granularity, it
is also able to extract a greater number of textural features [32].

LBP is a descriptor that has achieved great success due to its com-
putational efficiency and discriminative power. The traditional LBP
[31] is expressed as

∑=
=

−
LBP s x( )2 ,P R P

P P
, 0

1
(15)

where = −x q qp c is the difference between the intensity levels of a
central pixel (qc) and a set of neighbouring pixels (qp). A neighborhood
is defined by a circular region of radius R and P neighbouring points.
The function s(x) in Eq. (15) is defined as:
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≥
s x

x
otherwise( )

1, 0
0, .

(16)

Since each digit of an LBP code is assigned to a 0 or a 1, LBP codes
range in [0, 2P−1]. LBP descriptors are the histograms of these binary
numbers. The resulting patterns can be divided into two types: uniform
patterns, which have at most two transitions from 0 to 1 or from 1 to 0,
and nonuniform patterns, the label given for all other patterns.

TC extends s x( ) such that the different x are encoded with three
values instead of two using a threshold τ around zero:

=
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≤

− ≤ −
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x τ
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0, | |
1,

.
(17)

To compensate for the larger size of TC (for a given P-pixel neigh-
borhood, there are 3P possible codes with TC versus 2P with LBP codes),
the TC histograms are split into binary subhistograms that are then
concatenated, with each TC code divided into a positive and negative
binary pattern according to the sign of its components.

In this work, TC Features are extracted using the Moore neighbor-
hood (P =8, R =1) as well as (P =16, R =2), both with =τ 0.1 and
by extracting normalized uniform bins.

2.3. Global grading biomarker (GGB)

GGB, developed by Tong et al. [15], is a grading function that
propagates disease levels of CN and AD, which, when combined, form
the training population. The relationship of the training population to
each MCI subject is modeled through a weighting function using a
sparse representation method.

Since each MCI subject is assumed to lie in the space of the training
population, it can be represented through a linear combination of CN
and AD. After performing an FS process, K discriminative voxels and K
intensity values are extracted from each image. Given ∈ ×X RADNC K N ,
which contains the intensity values of N training images, and

∈ ×X RMCI K 1, which contains the intensity of an MCI image, a sparse
representation of the MCI subject is obtained (for details, see [15]).

The nonzero coefficients indicate that the corresponding training
image has been selected to propagate its clinical label information to
the target MCI subject. Using the L1 norm, one subject is selected, while
the other is discarded; adding the L2 norm produces a grouping effect
over the sparse coding coefficients so that both subjects can be used to
calculate GGB.

The scoring of each MCI subject is based on the coding coefficients α̂
and the clinical status of the selected training population. The clinical
status of a training image is denoted as si. If the training image is for an
NC subject, si is set to 1; if for an AD subject, si it is set to − 1. A global
grading value of the target MCI subject is then calculated by:

∑ ∑=
= =

g α i s α iˆ ( ) / ˆ ( ),MCI
i

N
i i

N

1 1 (18)

where N is the number of XADNC training images and α iˆ ( ) is the coding
coefficient corresponding to the training image X i( ).ADNC If GGB is close
to -1, then this indicates that the MCI subject is likely to convert to AD
within the given time period. If GGB is close to 1, then the MCI is less
likely to convert to AD within the given time period.

3. Experimental section

3.1. Datasets

The following four datasets belonging to two different brain MRI
studies, both based on the ADNI data repository adni.loni.usc.edu, have
been used to test the performance of our methods.

Salvatore: this set is composed of 509 subjects obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data repository
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(adni.loni.usc.edu). Data were collected from forty-one radiology cen-
ters and include 137 AD, 76 MCIc, 134 MCInc, and 162 CN. The follow-
up period to observe the conversion to AD was 18 months. For each
patient, data from the screening or the baseline were considered. The
final dataset is made up of T1-weighted structural MR images of the
patients acquired at 1.5 T according to the standard ADNI acquisition
protocol [33,34]. All images underwent a preprocessing step consisting
of a 3D-gradwarp geometry correction for gradient nonlinearity and a
B1 intensity correction for non-uniformity.

The following three classification tasks are performed: AD vs. CN,
MCIc vs. CN, and MCIc vs. MCInc. The validation of the classifier is
performed using 20-fold cross-validation (CV). More information about
the dataset and the splitting indexes can be found at https://github.
com/christiansalvatore/Salvatore-509.

Moradi: this is the dataset used in Moradi et al. Patients in the MCI
group were classified as progressive MCI (164) if a conversion to AD
during a three-year follow-up was observed. Patients were classified as
stable MCI if the diagnosis was MCI at both baseline and 36-months
follow-up. The validation of the classifier is performed using a 10-fold
CV approach.

3.2. Experimental results

In Tables 1 and 2 we report the error under the ROC curve perfor-
mance indicator (100-area under the ROC curve), accuracy (AC), sen-
sitivity (SE), and specificity (SP) obtained using the following methods:

• Tong: SVM trained considering only two features used in [15], i.e.,
the GGB and the age of the subject. Notice that in [15], as in other
published studies (e.g [35,36].), the cognitive measures used for the
clinical diagnosis of patients (i.e., the measures used to label pa-
tients as belonging to AD or MCI classes, e.g. MMSE) are also used
for the training of the classifier at time points preceding the clinical
diagnosis. This can produce an over performance in the automatic-
classification task [37] if these time points are too close to the time
of the clinical diagnosis. For this reason, we have not used the
cognitive features, but only the two above cited features.

• Feat(x): the voxel approach (see Section 2.1) based on the feature
selection named x. To reduce the computation time, the feature
selection named x is performed on 10,000 features selected by Fi.

• FeatFUS: a fusion between SVM trained with Feat(KPS) and Feat
(AS).

• Random: random subspace is a method for managing the high di-
mensional feature vector. We use a random subspace of 50 SVMs,
each trained with a subspace built using 2000 features randomly
extracted from the set of 10,000 features selected by Fi.

• IMG: our image-based approach proposed in this work. IMG is given
by the weighted sum rule among (TC+GABOR+WAVE-
H+WAVE-DB+WAVE-CO) and GOLD. All the methods are
weighted by 1 except GOLD that is weighted by 5; the weight of 5

given to GOLD means that it has the same importance in the fusion
as (TC+GABOR+WAVE-H+WAVE-DB+WAVE-CO).

• VoxIMG, sum rule among FeatFUS, IMG, and Random.

• FULL, weighted sum rule between VoxIMG (weight 1) and Tong
(weight 2).

Both the number of retained features and the parameters of SVM are
selected with an internal 5-fold cross-validation on the training data
(i.e., for each of the 20 folds of the CV, a further internal 5-fold CV is
performed using only the training data). Note: the test set is always
blind. Also, when we combine two methods (e.g., FeatFUS+ IMG), the
scores of each method (e.g., IMG and FeatFUS) are normalized to mean
0 and standard deviation 1 before applying the sum rule.

We want to stress that IMG coupled with FeatFUS obtains an in-
teresting performance improvement in all the MRI case studies (see
Table 2 as well). Clearly, more studies should be performed on texture
descriptors for improving the performance of IMG. In Table 2, we va-
lidate our approaches in the other three datasets obtained from the
ADNI data repository.

The method proposed in [15] performs exceptionally well, but the
fusion of that method with our approach improves performance even
more.

It is interesting to note that in all four datasets IMG improves the
performance of (FeatFUS+Random). The new method proposed here
(VoxIMG) obtains a performance that is slightly better than that re-
ported in Nanni et al. [14], where their approach compared favorably
with respect to different state-of-the-art classification methods that
were applied to the same dataset (ADNIset) used in this study (for a list
of the state-of-the-art, see [17] and [38]).

Using the Q-statistic [39], the error committed by FeatFUS+
Random and IMG are (partially) independent, and Q varies between−1
and 1. For statistically independent classifiers, Qi,k=0. Classifiers that
tend to recognize the same patterns correctly will have Q>0, and
those that commit errors on different patterns will have Q<0. The Q-
statistic between FeatFUS+Random and IMG is 0.786. Because of this
partial independence, their fusion improves performance.

In Fig. 2 we provide a comparison of ROC curves for AD vs. CN, MCI
vs. CN, and MCIc vs. MCInc.

What is important to note here is that methods based on voxels
extract information that is not captured completely by methods that
extract texture directly from MRI slices; in other words, combining
texture descriptors with voxel-based methods will improve perfor-
mance.

3.3. Discussion

Our proposed method that combines texture descriptors and voxel-
based features for the early diagnosis of AD shows classification per-
formance in line with the state-of-the-art research [40–42], slightly
improving the results obtained using other published feature-extraction
and classification methods (see Tables 1 and 2). As reported in a recent
review on ML techniques for the automatic diagnosis of AD [43], the
mean percentage AUC for discriminating AD vs. CN was found to be
94 ± 4. For the discrimination of MCIc vs. MCInc, the mean percen-
tage AUC was 70 ± 5. Other studies in the literature that investigated
the use of ML techniques for the automatic classification of MCIc vs.
MCInc report classification performances in the range 51–75%, lower
than or comparable to our proposed method [14,17,35,37,44–51].
Cevik et al. [13], mentioned in the introduction and who use a Multi-
variate Adaptive Regression Splines (MARS) method for classifying
structural brain MRI of AD, obtained a maximum average AUC of 87%
for the classification of AD vs CN (84% sensitivity, 86% specificity),
70% for MCIc vs CN (78% sensitivity, 89% specificity) and 55% for
MCIc vs MCInc (62 sensitivity, 60% specificity).

The main limitation of our work is that the proposed method was
validated and tested only on binary comparisons of clinical interest

Table 1
Proposed Ensembles, Moradi dataset. Reporting error under the ROC curve
(ROC), accuracy (AC), sensitivity (SE), and specificity (SP).

Method ROC AC SE SP

FeatFUS 26.1 68.8 80.9 53.4
Feat(KPS) 32.1 66.6 75.0 52.3
Feat(AS) 26.4 67.9 77.6 51.1
Random 28.7 62.1 55.9 72.7
IMG 27.6 65.0 82.2 42.1
GOLD 26.7 66.3 61.8 73.8
FeatFUS+ IMG 24.8 67.1 72.4 58.0
VoxIMG 24.7 69.7 69.1 62.5
FULL 13.8 78.8 78.9 77.4
Tong 15.2 76.9 78.6 74.0

Best performance is highlighted.
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(i.e., AD vs. CN, MCIc vs. CN, and MCIc vs. MCInc). Recent studies are
trying to address the problem of multigroup classification obtaining
encouraging results [52,53]. It must be underlined that the proposed
method can be translated to the discrimination of more than two di-
agnostic classes. However, further research is needed in this field.

In this paper, we compared the proposed method to a limited
number of different automatic classification and feature-extraction
techniques. However, new interesting techniques are emerging in the
recent literature, including 1) studies on the minimization of un-
certainty in prediction models (e.g. [54]), 2) studies addressing mod-
eling problems even in different research fields (e.g [55–57].), and 3)
deep-learning techniques, which are strongly emerging as potential
automatic-discrimination algorithms given their high performance in
different classification tasks (e.g [58].), but whose application to
medicine (especially to neuroimaging) is still limited, mainly due to the
high number of samples per diagnostic class needed to obtain stable
predictive models. All these emerging approaches should be considered
in future research work, and a comparison of the proposed method with
a more inclusive set of techniques could help trace future research di-
rections.

4. Conclusion

It is essential that methods be developed for early diagnosis of
Alzheimer Disease (AD). Drugs now in trial show the greatest benefit to
patients who have been diagnosed early; AD patients in a milder disease
stage tend to respond better [59]. It is hoped that even better results
will be obtained if proper drugs are taken before the onset of the clinical
symptoms.

In this paper, we propose robust machine learning methods for the
early detection of AD. Our system combines a set of SVMs trained on
different texture descriptors extracted from slices of MRI with a set of
SVMs trained on markers built from the voxels of MRIs. To reduce
computation time, voxel-based features are selected using different
feature selection algorithms, each of which trains an SVM. These two
sets of SVMs are then combined by weighted-sum rule for a final

decision. Our system was tested using two different brain MRI studies
(for a total of four datasets extracted from ADNI dataset). Results de-
monstrate that an ensemble of texture descriptors extracts information
that is partially uncorrelated to SVMs trained with a subset of the
voxels. In other words, their fusion improves performance. We also
show that the high-performance methods used in [15] are improved
when combined with the ensemble proposed in this paper.

In future studies, we plan on investigating the performance of IMG
using more descriptors (in particular, we will perform more tests using
Convolutional Neural Networks. We will also evaluate using some
powerful 3D texture descriptors).

For researchers interested in reproducing our experiments, our code
will be available at https://www.dropbox.com/s/bguw035yrqz0pwp/
ElencoCode.docx?dl=.
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